Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add filters








Language
Year range
1.
Braz. j. med. biol. res ; 48(12): 1087-1094, Dec. 2015. graf
Article in English | LILACS | ID: lil-762914

ABSTRACT

During gonad and adrenal development, the POD-1/capsulin/TCF21transcription factor negatively regulates SF-1/NR5A1expression, with higher SF-1 levels being associated with increased adrenal cell proliferation and tumorigenesis. In adrenocortical tumor cells, POD-1 binds to the SF-1 E-box promoter region, decreasing SF-1 expression. However, the modulation of SF-1 expression by POD-1 has not previously been described in normal adrenal cells. Here, we analyzed the basal expression of Pod-1 and Sf-1 in primary cultures of glomerulosa (G) and fasciculata/reticularis (F/R) cells isolated from male Sprague-Dawley rats, and investigated whether POD-1 overexpression modulates the expression of endogenous Sf-1 and its target genes in these cells. POD-1 overexpression, following the transfection of pCMVMycPod-1, significantly decreased the endogenous levels of Sf-1 mRNA and protein in F/R cells, but not in G cells, and also decreased the expression of the SF-1 target StAR in F/R cells. In G cells overexpressing POD-1, no modulation of the expression of SF-1 targets, StAR and CYP11B2, was observed. Our data showing that G and F/R cells respond differently to ectopic POD-1 expression emphasize the functional differences between the outer and inner zones of the adrenal cortex, and support the hypothesis that SF-1 is regulated by POD-1/Tcf21 in normal adrenocortical cells lacking the alterations in cellular physiology found in tumor cells.


Subject(s)
Animals , Male , Adrenal Cortex/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism , Phosphoproteins/metabolism , Steroidogenic Factor 1/metabolism , Adrenal Cortex/cytology , Basic Helix-Loop-Helix Transcription Factors/genetics , Electrophoresis, Polyacrylamide Gel , Gene Expression , Immunoblotting , Primary Cell Culture , Phosphoproteins/analysis , Rats, Sprague-Dawley , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , RNA, Messenger/analysis , Steroidogenic Factor 1/analysis , Zona Fasciculata/cytology , Zona Fasciculata/metabolism , Zona Glomerulosa/cytology , Zona Glomerulosa/metabolism , Zona Reticularis/cytology , Zona Reticularis/metabolism
2.
Braz. j. med. biol. res ; 32(9): 1115-20, Sept. 1999.
Article in English | LILACS | ID: lil-241606

ABSTRACT

The neuroendocrine system regulates several organic functions such as reproduction, metabolism and adaptation to the environment. This system shows seasonal changes linked to the environment. The experimental model used in the present study was Lagostomus maximus maximus (viscacha). The reproduction of males of this species is photoperiod dependent. Twenty-four adult male viscachas were captured in their habitat at different times during one year. The adrenal glands were processed for light microscopy. Serial cuts were stained with hematoxylin-eosin for the morphometric study, and 100 nuclei of each zone of the adrenal cortex were counted per animal. Data were analyzed statistically by ANOVA and the Tukey test. The cells of the glomerulosa zone are arranged in a tube-shaped structure. The fasciculata zone has large cells with central nuclei and clearly visible nucleoli and with a vacuolar cytoplasm. In the reticularis zone there are two of types of cells, one with a nucleus of fine chromatin and a clearly visible nucleolus and the other with nuclear pycnosis. Morphometric analysis showed maximum nuclear volumes during the February-March period with values of 133 percet 7.3 µm3 for the glomerulosa, 286.4 percent 14.72 µm3 for the fasciculata, and 126.3 percent 9.49 µm3 for the reticularis. Minimum nuclear volumes were observed in August with values of 88.24 + or - 9.9 µm3 for the glomerulosa, 163.7 percent 7.78 µm3 for the fasciculata and 64.58 + or - 4.53 µm3 for the reticularis. The short winter photoperiod to which viscacha is subjected could inhibit the adrenal cortex through a melatonin increase which reduces the nuclear volume as well as the cellular activity


Subject(s)
Animals , Male , Adrenal Cortex/cytology , Adrenal Cortex/physiology , Photoperiod , Rodentia/physiology , Seasons , Zona Fasciculata/cytology
SELECTION OF CITATIONS
SEARCH DETAIL